- ‘Big Picture of a Small World’ Sirve a modo de introducción y nos habla del átomo y de alguna de las mayores aportaciones a su comprensión como las de Demócrito, Richard Smalley, Rutherford, Bohr, Einstein o Richard Feynmann
- ‘Introduction to Miniaturization’ explica algunas de las ventajas de trabajar a muy pequeña escala pero también nos avanza algunas de las muy notables diferencias que nos encontramos frente a una física tradicional al trabajar en escalas nanométricas.
- ‘Introduction to Nanoscale Physics’ profundiza más en esa física de la nanoescala, repasa los fundamentos de la mecánica cuántica, de las ondas electromagnéticas o del efecto fotoeléctrico.
- ‘Nanomaterials’ donde empieza a acercarse las áreas de aplicación. Primero dedica un amplio espacio a repasar los conceptos del enlace químico y de las fuerzas de Van Der Waals para a continuación estudiar algunos materiales y estructuras destacando los nanotubos de carbono.
- ‘Nanomechanics’ Empieza repasando algunos conceptos físicos como velocidad, aceleración y fuerza o frecuencia de resonancia para a continuación estudiar fenómenos a nivel nano como osciladores, rayos, fonones, sensores de masa nanométricos, memorias nanometricas, microscopios, etc
- ‘Nanoelectronics’ De nuevo, comienza repasando fundamentos físicos como las bandas de energía electrónicas, el comportamiento en conductores, aislantes y semiconductores o la energía de Fermi para luego ver cómo se puede aplicar a escala nanométrica para conseguir, por ejemplo, transistores de un solo electrón (SET), interruptores moleculares o memorias de almacenamiento.
- ‘Nanoscale Heat Transfer’ Salta ahora al campo del calor y, tras repasar conceptos como la constante de Boltzmann o la conductividad de calor, pasa a estudiar los fenómenos de conductividad de calor en escala nano y nos habla de una mejor conversión de la energía en el caso de la termoelectricidad, o de aspectos relevantes en convección y radiación.
- ‘Nanophotonics’ que estudia la interacción a escala nanométrica de fotones y materiales. Nos habla de la absorción de fotones, de su emisión, de la dispersión, de la permitividad y luego habla de aplicaciones como el uso de partículas de oro o plata para cambiar colores, el ajuste de la banda de gap en semiconductores, láseres, luz,microscopios, etc
- ‘Nanoscale Fluid Mechanics’ Pasamos ahora a una mecánica de fluidos a escala nano. Primero nos habla del concepto de ‘Continuo’ y nos recuerda las ecuaciones de ‘Navier-Stokes’ o el número de Reynolds para ver cómo eso se traduce en escala nano en fenómenos como la electroósmosis o la electroforesis. Finaliza con un rapidísimo repaso a las aplicaciones de estas ideas.
- ‘Nanobiotechnology’ Comienza hablando de las células vivas, de su funcionamiento y cómo eso ocurre a escala nanométrica y las implicaciones que ello supone, como el hecho de que la gravedad y la inercia sean muy poco representativas a esa escala. Nos habla de azúcares, ácidos grasos, nucleótidos y aminoácidos para luego recorrer la estructura del ADN, el ATP, y la codificación de la información genética. Finaliza explorando algunas aplicaciones como nanoestructuras biomiméticas o motores moleculares
- ‘Nanomedicine’ Primero explica lo que es la nanomedicina. Luego nos habla de las nanopartículas, el uso de la nanomedicina en la lucha contra el cáncer o de la biomimesis, pero también nos alerta de la potencial toxicidad de estas soluciones, del posible impacto medioambiental y de sus implicaciones éticas
![]() |
Ben Rogers |
Nació en 1977 y vive en Reno, Nevada, con su mujer y dos hijas. Su primera novela ‘The flamer‘ se publicó en 2012. Sus obras han aparecido en una multiplicidad de publicaciones literarias y ganó una beca Nevada Arts Council Fellowship y una subvención Sierra Arts Foundation.
Jesse Adams
![]() |
Jesse Adams |
Cofundador de 3 startups y coautor de dos libros, actualmente sirve como miembro del consejo, Vicepresidente y CTO de Nevadano, así como miembro gestor de Nanolabz and Nanojems.
![]() |
Sumita Pennathur |
Actualmente, profesora asociada de ingeniería mecánica en la Universidad de California en Santa Bárbara, habiendo obtenido un grado en el MIT y un doctorado en la Universidad de Stanford. Ha sido una contribuyente activa en los campos de la nanofluídica y sistemas nanoelectromecánicos (NEMS), y fue premiada tanto con Presidential Early Career Award for Science and Engineering (PECASE) en 2011, como un DARPA Young Faculty Award en 2008.
PAGINAS: 395